Table of Contents for James Goodman’s Senior Integration Paper

I. Introduction 2

II. Body

A. Clark
 1. summary 2
 2. analysis 7

B. Maatman
 1. summary 9
 2. analysis 14

C. Russell
 1. summary 16
 2. analysis 18

D. Hearn
 1. summary 21
 2. analysis 24

III. Conclusion

A. “integration” 26

B. summary of beliefs 28

C. exhortations 30

IV. Works Cited 33

V. Bibliography 34

Most of these books can be found in Covenant’s library.
A Christian who is interested in pursuing a career in science, or in any field for that matter, would do well to consider the manner in which his or her faith affects his or her understanding and performance of that discipline. One’s faith, no matter what it is and whether it is acknowledged or not, will affect everything that that person does.

In order to function well and be able to communicate with others in a discipline of science who have different creeds and assumptions than my own, it is important to be aware of a wide variety of popular perspectives on the nature of the science and how it “fits” with religion. Therefore, I will be briefly reviewing four books that are on the topic of science and religion. These books do not contain an especially technical treatment of the discipline of the philosophy of science, but on the whole are written for the general populace.

The first book is a short work by Gordon H. Clark boldly titled *The Philosophy of Science and Belief in God*. In this work Clark spends the vast majority of the time giving a history of the development of science. He does
this by tracing philosopher’s and scientist’s conception of motion.

Clark begins in Ancient Greece with the Zeno, Hericlitus, and Aristotle. First Clark mentions Zeno’s conception of the problem of motion, which goes something like this. Consider a marble rolling across a table. At any given point along the marble’s trip across the table, the marble had to be, at some previous before that, half of the distance between the marble’s starting point and its present location. This means that in order for the marble to go from a static position to any other position, thus constituting motion, it would have to overcome the infinite number of positions between the starting position and whatever any other position might be.

“Since … an infinite series is precisely a series that cannot be exhausted, it follows that a marble or an atom can never begin to move. Motion is impossible” (13).

After giving a possible answer, Clark decides to completely dismiss this paradox for the sake of being able to think about science at all.

Clark then moves on to Hericlitus, who said that “All things flow” (15). Everything is always in motion. Therefore the universe is always a different one at any given instant. However, Clark states that
“The possibility of intelligible speech presupposes the existence of entities that remain unchanged for some finite time; and conversely the theory of universal change makes speech and knowledge impossible” (17). More generally, if we describe things as though they are static, e.g. a sculpture, when they are really constantly in flux, then we have no description of things in their intermediate states, which must be infinite since everything is flowing. Therefore it becomes impossible to describe anything, and nothing can be thought to exist. Aristotle seems to give a legitimate definition of motion, but it ultimately turns out to be circular.

Clark then moves to the next major revolutionary period in science, the Newtonian era. One of the primary marks of this era was to not waste time on the sorts of logical puzzles mentioned above, but to assume that the nature of time and space are obvious. Clark quotes Newton as saying, “I do not define time, space, place and motion, as being well known to all” (29). Another difference is that while the ancients largely only observed, those scientists of the modern era, the Newtonian era, experimented on principle (45-46). Another difference is the use of mathematics in theory (47).

“It was the Renaissance, the new birth of knowledge, that discovered what we now familiarly call the
scientific method; and the eventual purpose of this
discussion is to state, explain, and analyze this
method, for science and the scientific method are the
dominant intellectual interest of modern times and the
basis of our civilization” (28-29).

What rose out of the Newtonian science was a philosophy of
mechanism. Clark defines this as,

“The universe is viewed as a machine and the
predictions of the mathematical formulas are actualized
of necessity. Nothing contrary to the mathematics could
possibly occur” 47). “Nothing exists that can violate
mechanical law” (53). This idea of mechanism was
extended to all of life (48).

Therefore there is no such thing as a soul and a God.

“IT is now obvious that science has arrived at
conclusions of religious, ethical, and human import.
But is it still science? Is it not rather scientism” (57)?

Clark then goes on to show that these are conclusions that
can not legitimately be made for the following reasons.
Scientific laws are a construction, not a discovery,
depending on idealized and therefore non-existent
circumstances, and are therefore all false (64). Laws are
also false from the way in which they are derived. The
scientific method uses the effect (or observation) of a
proposed cause (or hypothesis) to prove a hypothesis. This is a classic example of affirming the consequent, which is a fallacious form of a modus tolens argument (73).

Clark uses this to say that since these laws are not an accurate description of reality, they cannot be used to exclude God from it. Furthermore, one can only come to embrace the theories of mechanism through a leap of faith (64). This conclusion becomes even more evident in light of the developments of twentieth century advances.

The science of the twentieth century is marked by a repudiation of Newtonian assumptions. In all of his calculating and theorizing, Newton assumed time and space to be absolute. At the same time, his law of gravitation, $F=Gm_1m_2/r^2$, presupposes a continuous interaction of all particles. This incompatibility is not one that was to survive any longer in this century. The elucidation of this inconsistency showed the mechanistic picture of the world to be not one that is discovered, but one that is taken on faith a priori. Clark then proceeds to offer operationalism as “the best available philosophy of science” (92). Operationalism, Clark says, is a subcategory of Logical Positivism, which stresses the methods of science and dismisses questions of ultimate principles as metaphysical pseudo-problems.
I will let Clark describe his conclusions in his own words.

“Science then must not be regarded as cognitive, but rather as an attempt to utilize nature for our needs and wants... Instead of being the sole gateway to all knowledge, science is not a way to any knowledge—unless... it is a knowledge of what to do in a laboratory” (93).

Clark’s entire argument seems to rest on the assumption that the “laws” that science puts forth are necessarily claimed to correspond one to one with ultimate reality, the way things really are. Since a perfectly correct law cannot be obtained, at least not certainly, either through induction or through the scientific method, which is not even a valid argument form, these laws are therefore false because they are not laws at all. It seems to me that this is similar to saying that since we can never accurately know what the proper time is to an infinite number of significant figures, we are lying every time we give an answer to the simple question about what time it is.

The problem with this is that there are few scientists and probably no philosophers of science who would claim that the laws that scientists induce perfectly describe the true nature of creation. No matter how good our “laws” get, they are still approximations. Does this mean that science must
not be regarded as cognitive? I believe that this is certainly not the case. These “laws” that scientists derive may not totally describe the reality to which they refer, but they must have at least some level of correspondence to what is really real. I believe this to be case because I believe that creation is God’s general revelation to His creatures. Romans 1:18-20 says,

“The wrath of God is being revealed from heaven against all the godlessness and wickedness of men who suppress the truth by their wickedness, since what may be known about God is plain to them, because God has made it plain to them. For since the creation of the world God’s invisible qualities—his eternal power and divine nature—have been clearly seen, being understood from what has been made, so that men are without excuse.”

We see from these verses that we can have knowledge about ultimate reality, God, “from what has been made.” Our observations in this world can, therefore, be said to be observations of ultimate reality. Because of sin and our willful suppression of this revelation, we cannot say that these observations are complete or even totally accurate in their description, but that does not change the fact that they are observations of what is real. If we, who are real beings created in the image of the real God, can make observations, through creation, that correspond to a
God that is real, and that very creation is the work of His hands, then it does not seem improbable that those observations themselves can also correspond to a real reality. All of this is to say that science can be cognitive and can be a way to knowledge, contrary to what Clark says on page 93.

The next book is a short work by Russell Maatman entitled *The Unity in Creation*. Like the previous text, this work is directed to the average layman. Maatman’s primary goal, as the title suggests, is to show that creation is unified. His thesis is that

“The history of physical science shows that physical scientists understand more clearly, as time passes, that there is but a single cause of all physical scientific observations”(70).

His basic model for this approach is in the form of an isosceles triangle. At the base of the triangle lie all observations that are made within the bounds of the physical sciences, i.e. physics and chemistry, similar observations being placed next to one another. Immediately above the base of the triangle lies a series of different laws which describe the various similar observations. Since this second level lies above the base in the direction of the opposite vertex of the triangle, the span of the width of this level is smaller. That is to say that there are fewer
statements, i.e. descriptive laws, than there are observations. An example of this level of “law” might be Boyle’s Law, which states that the volume and pressure of a gas are inversely proportional. This “law” would be sufficient to describe some set of observations in which all other conditions were equal and the various pressures tested were all at least within several multiples of atmospheric pressure. Several of these first level laws could then be grouped together into some smaller number of laws which are still sufficient to described all of the observations. This level of “laws” would be like combining Boyle’s Law with Charles’s Law, that if a given quantity of gas is held at a constant pressure, then its volume is directly proportional to the absolute temperature, and Avagadro’s Law, that the volume of a gas, at a given temperature and pressure, is directly proportional to the quantity of gas, into the ideal gas law, which states that pressure of a gas times its volume is equal to the its number of moles times Rairk’s constant times its temperature. This third level law contains three second level laws and many more first level observations. There is a problem though. There are many observations of “non-ideal” gas behavior that is observed at extremes in pressure and temperature. Therefore the ideal gas law is modified to give the van der Waal’s equation which has terms that account for the space that the gas
molecules occupy as well as attractive forces between the gas molecules which effect the efficiency of the collisions between the molecules. Here we have one law, a fourth level law, variations and approximations of which are sufficient to describe a bulk of the observations made on gasses. It is easy to see how similar things can be done with different areas in the physical sciences. The author uses this to induce that a single idea, or a very few number of fundamental ideas, which are located at the apex of the triangle, can describe all of the physical sciences.

It should be obvious at this point that what the author refers to as law is merely a description of observation. While these laws correspond to “the state of affairs” (the author’s term for ultimate reality), they do not describe “the state of affairs” itself. He says,

“The state of affairs is composed of a very small number of elements, perhaps only one, and these elements or a single element is the cause of physical scientific events” (61).

The “state of affairs” refers to the ultimate reality that lies behind what we observe, we do not observe the state of affairs itself.

“The triangle represents our understanding (observations, laws, and fundamental ideas) of reality, not reality itself” (67).
(It should be noted that this conception of law is the opposite of what Clark assumes scientists means by the term. He treats “scientific law” as though it is intended to represent reality itself.)

In reference to the law at the top of the triangle, the fundamental principle(s) or law(s), the author goes on to make several statements about what these laws mean. Since the triangle is not ultimate reality itself and only describes it, any unified field theory would in no way threaten the possibility of the existence of a God who has created and sustains all things. This would require confusing our description of reality, the triangle, with “the state of affairs,” which is ultimate reality, what is actually there and happening. While there is a correspondence between the two systems, it is not one to one. To make the claims that many contemporary scientists make, that we have explained away God and that there is no longer a need for Him or a gap for Him to fill, is to use science as the basis for going beyond the scope of science, which, of course, it cannot do.

The author then discusses the important issue of cause and effect. The “state of affairs,” says Maatman, is the cause of the effects which the laws that make up the triangle describe. This gives a link between the state of affairs and the triangle. Maatman says,
“The existence of interaction, or of cause and effect, means that power, the link between cause and effect, exits. One thing causes another. A certain set of laws reflect a part of the state of affairs which, in turn, is the cause of an event we observe; that is, the laws reflect the cause of our observation. Thus, power connects the parts of the triangle. Power flows through the triangle from top to bottom” (64).

Since God created all things and in Him all things hold together, the state of affairs necessarily depends on Him and on Him alone. This means that there is one more step beyond fundamental ideas on the triangle scheme. The sequence now must be observations, laws, fundamental ideas, and knowledge of what God does (66). Each level in this sequence is the cause for the one before it, meaning that God is the first cause.

If God is the first cause, then creation cannot be chaotic.

“When God acts, He does not contradict another action of His. His power is coherent. There is no internal conflict in what God does. He is one God” (70). For this reason, there can be no inherent contradictions in the entire system of the triangle.

I certainly find this book to be more agreeable than Clark’s book. In fact, there is relatively little with
which I do not agree. One link in Maatman’s argument that I do not understand is why the fact that God is one requires such a paucity of fundamental principles. Maatman says, in response to the objection of why to assume fewer and fewer fundamental ideas, “It can be no other way. There is only one God who has and uses power” (78). It seems to me that a larger number of fundamental principles would not require a larger number of gods who have and use power.

Unfortunately, this is the way in which Maatman induces and defends too many of his points. Some points, such as the one to which I just eluded, are neither as certain nor as obvious as the author claims them to be. In many cases he refers to people introduced in the beginning of the book who have no formal scientific training. He says that if they were asked thus and such, like whether or not that which is being observed really there, the answer would be obvious to them and they would think the one asking to be a little crazy. Somehow this is taken to be support for a proposition. I do not think that the “Well, duh!” argument is a strong one.

A model that is slightly different but that would not require a single or a few fundamental principles is that of a series of concentric circles. The outermost circle would be the observations, intermediate circles would represent a decreasing number or more and more general laws, and the
innermost circle would represent the most fundamental laws, however many their might be. This model is not too different from the triangle, but it does not require what I consider to be the jump from the notion that there is one God and therefore there should be one fundamental law.

The next book, written by Bertrand Russell, is entitled *Science and Religion*. As far as I can tell, Russell’s goal in this book is to show that religion is for the ignorant. He starts the book with a section on the grounds on which he sees this conflict. He then goes on to show, from examples in the history of science and medicine, that in nearly every instance where the cautious, truth seeking scientist discovered something that was in conflict with certain dogmas of the church, or even just popularly held religious beliefs, the arrogant and self-righteous purveyors of religion would seek to persecute the scientists before, and even some times after, their own religious beliefs were shown to be errant.

Focusing in on the grounds of the conflict between science and religion, Russell contrasts his definition of science with the way in which organized religion makes use of creeds. In the author’s view,

“Science is the attempt to discover, by means of observation, and reasoning based upon it, first, particular facts about the world, and then laws
connecting facts with one another and (in fortunate cases) making it possible to predict future occurrences” (8).

Russell says that if one were to question a creed, he would be weakening the authority of the church, and, furthermore, undermining the moral base that the church had established by means of those creeds. Therefore science promotes progression and religion resists progression, sometimes even by burning people at the stake.

Russell talks about two sorts of conflict between science and religion. The first sort is when science disagrees with the Bible on a specific point. Russell assumes here and in later arguments that the Bible can only be interpreted literally. He also assumes that the church’s interpretation of the scriptures at the time of a conflict was the right interpretation. When that interpretation is proved wrong, the Bible is therefore necessarily proved wrong as well. This is the more minor conflict.

The deeper conflict, according to Russell, arises when science “contraverts” a belief that is viewed as essential to orthodoxy (10). This was more of a factor in the Middle Ages when the theologians of the time would build vast networks of beliefs falsely deduced from some principal taken from scripture. It is at this point where Russell sees the difference between religious reasoning and
scientific reasoning. While religious beliefs are deduced from some general idea, science reasons inductively, from some very basic assumptions about a set of observations to a rule that can be used to describe them. If this rule is tested over time and no instances are encountered which break the rule, the rule is taken to describe a general principle.

Russell makes another distinction between science and creeds. He says that creeds are claimed to be absolutely true, transcending time and culture. Science, on the other hand, claims a different kind of truth.

“Science is always tentative, expecting that modifications in its present theories will sooner or later be found necessary, and aware that its method is one which is logically incapable of arriving at a complete and final demonstration” (14).

Therefore it is not absolute truth which science claims, but “technical truth, which belongs to any theory that can be successfully employed in inventions or in prediction of the future” (15).

Relying heavily on A. D. White’s book, A History of the Warfare of Science with Theology in Christendom, Russell goes on to give historical examples of the conflict that has arisen between the proponents of various creeds and ambitious scientists. He also presents chapters on
mysticism, science and ethics, body and soul, and
determinism. In every case, he attempts to relegate
religion to the point at which it can in no way touch
science. He says that the only thing that religion can tell
us is that which we cannot know. Therefore, religion ends
up being little more than an exercise in futility. At best
it is a security blanket to which anti-intellectuals who are
not concerned with inconsistency can cling.

Throughout his book, Russell uses science over and over
again to try to functionally exclude God and religious from
the set of things in which intelligent people believe. This
line of argument will not work because of the severity of
its flaws. Russell himself says that the scientific
approach is to reason from specific instances, or
observation, to general principles, or laws. Scientific
reasoning is a posteriori. The problem, however, with
induction, is that it cannot be exclusive. A general
principle induced from specific events cannot exclude some
other specific event simply because that event did not
happen to occur in the body of events from which the general
principle was induced. When Russell assumes this to exclude
religion and God, he is taking his set of induced principles
and claiming them to be absolute, as though they were
induced from the set of all possible events. As someone
whose name escapes me once said, this is like claiming that
everything that is not in my fishing net is not fish. This, of course, is ridiculous.

Another problem with Russell’s analysis is that he judges the viability of all religion on the basis of the actions of a relatively small number of the religious. Anecdotal arguments of this sort are inherently very weak. This would be like me looking at the National Basketball Association and saying that since a significant portion of the most visible players seem to be total pagans, then basketball is, therefore, an evil sport. Clearly this jump is not legitimate. I would be judging the ontological value of one thing, basketball, by the ends for which, or telos, a select few of its practitioners seem to work, pleasure. This, which is clearly in acceptable, is what Russell appears to be doing with religion and the religious.

While Russell’s criticisms may not be legitimate, we Christians should, nonetheless, take them very seriously. Our actions reflect what be believe to the world. If the world has no notion of the struggle between sinfulness and righteousness that a Christian endures along the path of sanctification, then they will not think twice about drawing conclusions about our faith and our God from our actions, sinful or not. This means that in all that we do, we should all the more seek to humbly show others the grace and mercy that we ourselves have been shown in Christ.
The last work, by Walter Hearn, entitled *Being a Christian in Science*, has something of a different aim than the other texts. I chose this book as one of the four because I believe that it is representative of the way the vast majority of Christians in science think. This book is directed towards a Christian audience who is in a career in science or who is interested in pursuing such a career. Its goal is to give very practical insights and advice to these people as they embark on their careers in science. The author relies primarily on personal experience and anecdotes for the bulk of what he says.

Part one, called The Big Picture, attempts to give a broad outlook on what problems that will face a Christian in the laboratory, and practical advice on how to deal with those problems. Part two is called Close-Ups, and it contains 5 sections that expand on ideas given in part one. In the first chapter, called “Jesus in the Laboratory?” Hearn defines what it means to be a Christian, what it means to be a scientist, and what it means to be a Christian in science. Referring the reader to the first close-up, The Core of the Christian Faith, Hearn says that

“Christian faith has at its core the shared experiences and basic beliefs of a community, extending out to more and more negotiable theologies... The core experience is usually described as one of encountering God by placing
unreserved trust in Jesus Christ. The good news of God’s forgiveness dependent of Jesus’ incarnation, crucifixion and resurrection, opens for believers access to a depth of spiritual awareness otherwise unknown” (114).

Hearn says that “most people recognize science as the study of natural phenomena by observation and experimentation” (17). This is his working definition of science. A scientist, therefore, is someone who does this. In the beginning of the section where Hearn talks about being a Christian in science, he says that the goal of the book is to show some of the challenges faced by those people who have decided to take the “dual path” of Christianity and science. Hearn is setting up a model of a dualism of conflict between Christianity and science that he uses throughout the book.

In the next chapter the author takes a tangent on values and science. He attempts to distinguish between values of, values from, and values in science. He seems to view the value of science to be technological advancement (32-33). Values from science include curiosity and the tendency to influence people by evidence rather than coercion. Values in science are things that the author defines as values that are needed in science, but can only be learned outside of science. These sorts of values
consist largely of honesty and forthrightness in carrying out and reporting one’s work in the lab. The next chapter is about science as a Christian calling. All that the author really says on this subject is that the calling of a Christian into a career in science by God can be determined through the scriptures, through prayer and meditation, and through whether or not God has given the Christian the intellectual gifts necessary to be a scientist.

In the fourth chapter, What to Expect, Hearn returns to the dualism between science and Christianity that he set up in the first chapter. He says that Christian scientists are people with two citizenships in two separate and distinct communities. He likens this situation to a football player that plays chess as well. Hearn says that

“Even if one cannot play both games simultaneously, there is no reason why a successful quarterback or defensive tackle could not win a chess match... We are not negating the rules of one game when we concentrate on the other, though having to shift our focus from one to the other will not be understood by anyone who plays by a single rule book. The moves of knights and bishops do not pertain to the gridiron and offensive guards do not block for the queen’s moves on the chessboard” (60).

The author goes on to say that
“The practice of discussing the day’s work with my Lord probably kept me from feeling that I had to work out an explicit philosophical position, or worldview, to tie my faith and science together” (76). This position makes sense if one considers the author’s view of integration given in the next chapter. There he says, “The mark of an integrated Christian life is to think and pray about whatever is important” (79). The rest of this chapter contains advice on properly dividing time between one’s scientific career, his family, and his church.

While there are several things in this book that could be discussed, I would like to focus in on the duality that Hearn sets up between science and Christianity. By using this model of duality, of the football player who can play chess as well, he makes the two areas separate and distinct. The last sentence from his quotation on page 60 that appears above is evidence of this. One of the anecdotes that Hearn gives is from one time when he spoke at a small Christian college. From what Hearn believes was a misunderstanding of his remarks on this duality, one of the philosophy professors in the audience began using him

“as a bad example of a scientist who leaves his faith at the door when he enters his laboratory’” (95). He goes on to say that this could not be the case, that he does, in fact, bring his faith with him because
“I knew I needed guidance and forgiveness in the lab as much as anywhere else, especially in my interactions with students, technicians and colleagues” (95).

What Hearn is doing is not the same thing as taking his faith with him into the laboratory. He might be taking his faith into the relationships and actions that take place in and around the physical laboratory itself, but he is not allowing his faith to inform his discipline. Perhaps one question to ask Hearn would be whether or not his faith in the lab as he sees it would be different from the faith of a Muslim scientist or a Jewish scientist exhibited in the same setting.

What Hearn is doing when he says that Christianity does not pertain to science is denying what the apostle Paul says in Colossians 1:17 and 18b:

“He is before all thing and in him all things hold together… he is the beginning and the firstborn from among the dead, so that in everything he might have supremacy.”

Hearn is saying He has supremacy in relationships and in attitudes, even perhaps in the practice of doing science, but he is denying that Christ Himself has supremacy of science itself. While this might work for someone who does not feel the need to have a worldview that ties one’s faith and science together, it is unacceptable for someone who
truly believes that in ALL things Christ is preeminent, as Colossians 1:18 says.

But what is a proper way in which to integrate science and Christianity? Let’s take a step back and try a different perspective. One of the things that we must believe, as Christians, is that the Bible is God’s word and that all that it contains is necessarily true. This must be our starting point. We take the Bible to be true a priori. Not only that, but we know, from God’s word, that God is the source of all truth. Therefore, anything that is true derives its truthfulness from being created by Christ, the Son of God. Furthermore, if creation is the affect of Christ’s creative act, and science is the study of that creation, then science and Christianity already are integrated. Science and Christianity are not two separate and distinct things that we need to somehow force to fit together in order to legitimate our participation in science as Christians. Science depends on Christ.

Without Christ there would be no science. This is true for two reasons. First of all, as we have already established, Christ created the universe. Without Christ there would be no creation to study and no creatures, or humans, to study it. Secondly, if we believe that science is about building models that have at least some level of truth in that they at least partially correspond to reality
(see the analysis of Clark’s book), and if it is true that non-Christians are able to do science, it does not take much of a knowledge of a history of science to believe this one, then science must be possible only because of common grace. The only source of all grace, whether it be redemptive or common, and truth is Christ Jesus alone. For these reasons, if Christ was not pre-existent to the foundation of the world and if He had not been incarnated, crucified, and raise by the Holy Spirit in that same world which He created, then science would not be possible.

But what is science? Since this is a question that no one seems to have been able to satisfactorily answer yet, at least not to the degree of gaining general consensus, I will not even attempt it here. I will, however, try to briefly summarize what I think we are doing when we do science. I would describe my current view as being structurally similar that of Maatman with a little of the skepticism of Clark. I think that science is, at least in part, made up of observation of and generalization about the world. I believe that the observations and generalization are biased and flawed, and will be until we are glorified, but that they are nonetheless legitimate in the sense that they correspond in a quantifiable way with the real world. (The bulk of my skepticism lies in the fact that the test for this correspondence is also observational, and therefore
subject to the very same problems as the observational
generalizations that we are testing.) Furthermore, I believe
that it actually is the real world that we are attempting to
describe when we generalize our imperfect observations of
it. Therefore, if we are discovering “truth” when we do
science, it is truth in the sense of reliably describing and
predicting the way in which we see the world, not truth in
the ultimate sense. However, if we are gaining truth at all,
it must be, as stated above, because of the person and work
or Christ.

With this description of science, science does not
claim to be defining or revealing “natural law.” Neither
does it claim to be accessing some pure form of transcendent
truth. By silence, it is still claiming that there is
possibly more “out there” than what we have the ability to
observe. In fact, this description is not exclusive of
anything except what we used to think and have since
improved upon and those models that do not account for our
past and current observation. Science is concerned with the
physical world, and it says nothing explicit about the parts
of reality that are something other than physical.

Notice what this description assumes. It assumes that
the physical world around us behaves in some consistent
fashion that is knowable. Not only is it consistent and
knowable, but the physical world behaves in such a way that
similar causes have similar effects—i.e., the world responds in a repeatable way.

What is attractive about, but certainly not unique to, this description of what science is doing is that it admits at least some of the subjectivism that has long been considered a part of literature, and history, but was not really included in the story of science. For some reason, science has been thought by many to somehow escape this problem, if it can be viewed as such.

In conclusion, if science is only possible because of the creative act of and the historical person and actions of Christ, and if “God’s invisible qualities—his eternal power and divine nature—have been clearly seen, being understood from what has been made” (Romans 1:20), then doing science is an act that is necessarily Christian. This is the case in that it reveals the God of the Bible, whether we acknowledge it or not. This means that the scientists who are also unbelievers are not being honest. They, because of sin, instead choose to suppress this truth in unrighteousness. Romans 1:20 says,

“For although they knew God, they neither glorified him as God nor gave thanks to him, but their thinking became futile and their foolish hearts were darkened. Although they claimed to be wise, they became fools and exchanged the glory of the immortal God for images made
to look like mortal man an birds and animals and reptiles.”

So what does this mean for the Christian who is interested in pursuing a career in science? I see two gigantic exhortations in this. The first one is to not be afraid. There are many vocal people in science today who are very antagonistic towards Christianity. The Christian, however, has no reason to fear this. First of all, we know that Christ is on our side. If Christ is able to redeem us, fallen and as blatantly rebellious as we are, from the eternal judgment of an infinitely just and Holy God, then we have nothing to fear from anyone in this life, not even from the vindictive department chair who is bent on rooting all religion from the lab. Secondly, we know, in humility, that we are right, and that those who deny the truth do so because of open sin and rebellion.

This brings me to the second exhortation. If what Paul said in Romans about seeing the invisible attributes of God in creation is true, then we have before us a world of evangelistic tools, literally. There is the added benefit that the Christian in science is likely to spend a lot of time with many who are not redeemed, as they together ponder what the Christian knows to be the invisible attributes of God. The number of doors that God could open in a situation such as this is exciting, to say the least.
Knowing these things, in spite of my great naiveté as to what my years in graduate school and in a future career will be like, gives me great joy and confidence as I seek to glorify Him in all that do and learn, both inside and outside of the lab.
Works Cited

Bibliography

Chalmers, A. F. What is this thing called Science?

Clark, Gordon H. The Philosophy of Science and Belief in God.

Kuyper, Abraham. Lectures on Calvinism.

Maatman, Russell. The Unity in Creation.

White, Andrew D. A History of the Warfare of Science with Theology in Christendom.